### ASCPT 2018 ANNUAL MEETING

MARCH 21 - 24, 2018 · HILTON ORLANDO · ORLANDO, FL

## Welcome & Introduction

- WHY: Communication skills!
- WHAT: a challenging drug development problem to be solved by pharmacometricians and presented to clinical decision makers
- WHO:
  - UNC: Alan Forrest, Julie Dumond
  - Certara: Mark Lovern, Nathan Teuscher, Shuhua Hu
    - Organizers/Expert Panel were not involved in the team evaluation process



## **MIDD Gran Prix Workflow**



## MIDD Gran Prix Expert Panel

- Jill Fiedler-Kelly, Cognigen Corporation
- Richard L. Lalonde, Bradenton, FL
- France Mentré, University of Paris Diderot
- Carl Peck, UCSF Center for Drug Development Science
- Issam Zineh, US Food and Drug Administration

### The Case of Drug D



| =     |     | 50              | cheat                 | lie             |        |            |  |
|-------|-----|-----------------|-----------------------|-----------------|--------|------------|--|
|       |     |                 | MARCH                 |                 |        |            |  |
| MON   | TUE | WED             | THU                   | FRI             | SAT    | SUN        |  |
| 19    | 20  | 21              | 22                    | 23              | 24     | 25         |  |
| 6:30  | АМ  |                 |                       |                 |        |            |  |
| 6:30  | AM  | Netwo           | orking                | Breakfa         | ast    | 0          |  |
| 8:00  | AM  | <b>Q</b> Orland | do Ballroc            | m Foyer         |        | Ð          |  |
| 7:00  | АМ  |                 |                       |                 |        |            |  |
| 7:00  | AM  | Pharn           | nacom                 | etrics S        | Skills |            |  |
| 9:00  | AM  | Comp<br>Gran    | etition<br>Prix       | : MIDD          |        | $\bigcirc$ |  |
|       | •   | <b>O</b> rland  | do IV                 |                 |        |            |  |
| 7:00  | AM  | ASCP            | T Info                | Desk a          | nd     | 0          |  |
| 12:00 | PM  | Regis<br>Orland | tration<br>do Ballroc | Open<br>m Foyer |        | (+)        |  |
| 7:00  | AM  | Speal           | ker Rea               | dy              |        |            |  |
| 1:00  | PM  | Room<br>Key W   | Open<br>/est D        | 69292           |        | ( + )      |  |
| 7.00  |     |                 |                       |                 | _      |            |  |
| Nov   | v   | SCHEDUL         | E MY                  | SCHEDU          | ILE    | <b>=</b>   |  |

| DETAILS                                    | DISCUSSION                                  |     |
|--------------------------------------------|---------------------------------------------|-----|
| US Food and                                | n, PnarmD, MPH<br>Drug Administration       | >   |
| PDFS                                       |                                             |     |
| Source Code                                |                                             | >   |
| Handout                                    |                                             | >   |
| Scenario                                   |                                             | >   |
| LIVEPOLL                                   |                                             |     |
| Pharmacometrics<br>This is LivePoll for Pl | Skills Competition<br>harmacometrics Skills | ; > |
|                                            | adula Pemor                                 | 10) |

### The Challenge to the Contestants

- Develop dosing guidelines for Drug D
  - Restrictive protein binding, active metabolite
  - Increases concentrations of R
  - Consider precision dosing
- Quantify the % of patient days that are below, within, and above the R target range with your dosing regimen

### The Challenge to the Contestants

- Should we proceed directly to a Phase 3 study?
- Identify and propose solutions to the critical gaps in knowledge that might affect the success of Drug D
- Compared to D0, the current standard of care, what is the commercial viability of Drug D?
  - D0 is dosed twice daily
  - ~70% of patients receiving D0 achieve R concentrations in the target range
  - Graded and defined adverse event profile

Student/Trainee Team Presentations Trainee Team 1: Leiden PMX Presenter: Rob van Wijk, PhD

Team Members: Sebastiaan Goulooze, MSc Linda Aulin, MSc Sinziana Cristea, MSc Michiel van Esdonk, MSc

# IDOSE: identification of and dose optimization for drug D-sensitive patients

#### Leiden PMX

Rob van Wijk, Linda Aulin, Sînziana Cristea, Michiel van Esdonk, Sebastiaan Goulooze





### Fixed dose of drug D only treats 23%



Drug D-sensitive patients need to be identified

## Select drug D-sensitive patients



Identify and Dose Optimize SEnsitive patients (IDOSE)



This IDOSE application was developed to identify and optimize dosing in sensitive patients for drug D.

Insert a patients albumin, GFR (MDRD) and observed R levels and the dosing algorithm will start.



#### Introduction Dosing recommendations

#### Main conclusions:

A new dose of 600 mg was estimated for this individual!

The percentage of time within the therapeutic window with the new dosing regimen was 86.9 % of the 7 day period. The risk on adverse events was only 5.9 %.

#### Continue treatment of this individual with a dose of 600 mg b.i.d.

Simulations with an up-titration of 100 mg per dose have been performed and are shown in black below, if applicable.



2



Model fit results

## Model informed advice

### Commercial viability

Substantial clinical benefit necessary

Phase IIb study using IDOSE application

• 300 patients, 7 days treatment

### Knowledge gap

- Mechanism of action
- Drug-drug interactions





## Trainee Team 2: Team Maryland Presenter: Alejandro Perez Pitarch, PhD

Team Members: Ken Ogasawara, PhD Beatriz Guglieri Lopez, PhD

## Outline

#### **OBJECTIVES**

- 1. Propose <u>dosing guidelines</u> for Drug D.
- 2. Propose next study design.
- 3. Identify critical gaps in knowledge that might affect the success of Drug D in this disease.
- 4. Assess the commercial viability of Drug D relative to the SOC.





## 2) Next Study Design & 3) Critical Gap







MARCH 20-24, 2018 - ORLANDO, F

## Cast your Vote Now

| DETAILS                                         | DISCUSSION          |
|-------------------------------------------------|---------------------|
| Issam Zineh,<br>US Food and D                   | PharmD, MPH         |
| PDFS                                            |                     |
| Source Code                                     | >                   |
| Handout                                         | >                   |
| Scenario                                        | >                   |
| LIVEPOLL                                        |                     |
| Pharmacometrics SI<br>This is LivePoll for Phar | kills Competition > |



### **Professional Team Presentations**



Professional Team 1: GEMS (Genentech Modelers) Presenter: Kenta Yoshida, PhD

Team Members: Vidya Ramakrishnan, PhD Matts Kagedal, PhD Michael Dolton, PhD Phyllis Chan, PhD

### Model-Informed Assessment of Development Strategy for Drug D

#### **Executive Summary**

- Current assessment of commercial viability for Drug D is low
  - Non-responders and need of treatment individualization to match the efficacy profile with D0

#### Key knowledge gaps:

- Exposure-response at expected therapeutic dose levels for efficacy & safety
- Drivers of efficacy and safety (parent/metabolite)
- Mechanism of variable drug response among patients
- Phase 2 study and in vitro/preclinical mechanistic studies are recommended to:
  - Fill the knowledge gaps and provide better assessment of commercial viability
  - Optimize treatment individualization strategies to achieve better balance of efficacy/safety

Team GEMS (GEnentech ModelerS) - March 24, 2018



## Key learnings from PKPD analysis

- Population PK analysis
  - Linear PK observed across dose levels
  - High albumin levels steeply increase total parent concentration, but not metabolite
  - Limited understanding of unbound parent drugs
  - Uncertainty in drivers of safety makes it difficult to directly translate the finding into recommendations

#### Simulated exposures with 900mg BID dosing



- Population PK/PD analysis
  - Metabolite seemed to drive response (R)
  - R<20 for most patients in study 3</li>
  - Large inter-individual variability (IIV) in drug effect
  - Subset of population (~20%) did not appear to respond to the treatment

#### Simulated PD response (R) at different dose levels



### Optimal dose explored by clinical trial simulations

- 900mg BID is most likely to maximize target attainment (20<R<30)</li>
  - Uncertainty in "best dose" due to paucity of data from therapeutic dose levels
  - Increased proportion of exceeding safety threshold (R>35 and parent>35 mg/L) with higher dose

#### Proportion of patients achieving 20<R<30



- Dose individualization expected to improve target attainment
  - Large variability in drug effect warrants dose individualization based on measured R after one dose
  - Target attainment similar to D0 can be achieved

#### Simulated average R at steady state



### Recommended next steps for drug D

- Additional Ph2 study
  - Characterize E-R at exposures covering expected therapeutic dose levels
  - Dose-switching cohorts (1B/3B) to inform feasibility/accuracy of dose individualization strategy
  - Analysis of outcome to optimize Ph3 dose including individualization
- Biomarkers for PD effect
  - Explore biomarkers that can explain inter-individual variability in drug response and identify non-responder population
- In vitro / preclinical studies
  - Establish active compound responsible for efficacy/safety
  - Mechanism of albumin effect, measure unbound parent drug in plasma
- Evaluate other factors that influence clinical utility of D
  - Properties of AE (severity, frequency) and relative importance of disease control vs minimizing AEs
  - Need of treatment individualization for the Drug D0

#### Possible Ph2 study design



Allocation

### Recommendations

- Current assessment of commercial viability for Drug D is low
  - Non-responders and need of treatment individualization to match the efficacy profile with D0
- Key knowledge gaps:
  - Exposure-response at expected therapeutic dose levels
  - Drivers of efficacy and safety (parent/metabolite)
  - Mechanism of variable drug response among patients
- Phase 2 study and in vitro/preclinical mechanistic studies are recommended to:
  - Fill the knowledge gaps and provide better assessment of commercial viability
  - Optimize treatment individualization strategies to achieve better balance of efficacy/safety

### Acknowledgement

- Event organizers
- Team GEMS



Phyllis Kenta Matts Michael Vidya

## Professional Team 2: Supermodels Presenter: Akekemi Taylor, PhD

Team Members: Leon Pheng, PhD Benjamin Rich, PhD Thomas Peyret, PhD

### Drug D DOSING RECOMMENDATIONS AND ASSESSMENT OF COMMERCIAL VIABILITY

Supermodels Team (Certara)

Thomas PEYRET Leon PHENG Ben RICH Adekemi TAYLOR Yuan XIONG

### CAN WE SUCCESSFULLY MARKET DRUG D?

### i DRUG D

- Under development to treat disease X
- M is it's major metabolite
- Increasing doses of D increases concentrations of endogenous R

### BID DOSING OF THE D0 (SOC) ACHIEVES PD TARGET IN 70% OF PATIENTS, WITH AES IN 25%

#### **TARGETS**

- PD: R = 20 30 units
- Safety: D ≤ 35 mg/L

### WHAT WE HAD AND WHAT WE DID

| STUDY | POPULATION                               | DOSING                                 | SUBJECTS | DATA                 |
|-------|------------------------------------------|----------------------------------------|----------|----------------------|
| 1     | Normal adult volunteers                  | 21 to 84 mg (single ascending dose)    | 21       | Plasma D&M, Urine D  |
| 2     | Normal & impaired renal function         | 70 mg (single dose)                    | 35       | Plasma D&M, Urine D  |
| 3     | Phase 2 blinded placebo-controlled study | Placebo, 130, 260, 390 mg (multi-dose) | 130      | Plasma D&M, Serial R |



Maximum inhibition = 52.5%IC50 = 1.53 mg/L M Mean Cmax = 4.5 mg/L M



### AT SAFE DOSES, <50% OF PATIENTS ACHIEVED THE TARGET RESPONSE



- % experiencing target response
- % experiencing AEs (exceed the safety threshold of 35 mg/L of D).
- maximum dose tested in clinical studies (390 mg once daily)

### THE MODEL PREDICTS A DRUG-INDUCED MAXIMUM INCREASE IN R OF $111\% \rightarrow -21$ EFFECT UNITS.

### DRUG D IS NOT READY YET FOR PHASE 3 PRIME TIME



None of the dose regimens studied or simulated beat D0 PD

#### ▲ Increasing D dose increases the risk of safety issues

#### Next steps

Higher doses need to be tested in Phase 1 and 2 PK/PD studies Investigate whether a high-responding subpopulation can be identified Run a special population trial in high-responding subjects

## Cast your Vote Now

| DETAILS                                         | DISCUSSION          |
|-------------------------------------------------|---------------------|
| Issam Zineh,<br>US Food and D                   | PharmD, MPH         |
| PDFS                                            |                     |
| Source Code                                     | >                   |
| Handout                                         | >                   |
| Scenario                                        | >                   |
| LIVEPOLL                                        |                     |
| Pharmacometrics SI<br>This is LivePoll for Phar | kills Competition > |



### Judges' Decisions



### **Awards Presentation**



### **Questions?**



### **Back-Up Slides**



## The Case: Drug D

- Data from three clinical studies
  - 1. Single ascending oral dose, healthy volunteers
  - Single oral dose, healthy + end-stage renal disease
    Phase 2, multiple-dose, dose-ranging, placebocontrolled, patients
- Drug (D), metabolite (M) in plasma (1, 2. 3)
- D in urine (1, 2)
- Pharmacodynamic response (R, 3)

## **Drug D: Known Properties**

- D is ~ 80% bound, mainly to albumin
- M is cleared by nonrenal routes, not highly bound
- PD is an increase in an endogenous molecule R
  - Baseline: 6-12 units
  - Target: 20-30 units
    - 25% of animals experience toxicity at 25-35 units

• D > 35 mg/L associated with significant toxicity risk

### Drug D Clinical Studies: Technical Details • Handout available in the ASCPT Meeting



Significant covariates: CrCL on CLR Age on CLNR

D: restrictive binding, fu linear with albumin

D and M are both active



PD